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Abstract- Explicit formulas are derived for the heat flux per unit area on a general receiver surface after 
planar incident radiation is specularly reflected from a cone. a paraboloid of revolution. and a hemisphere. 
The formulas for flux density are inverted so that the coordinates of receiver points on the receiver surface 
are expressed in terms of flux density. These provide closed analytical expressions for flux density contours. 
Typical results are plotted as contours of constant illumination on a planar receiver surface which is per- 

pendicular to the axis of symmetry of the reflector. 
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NOMENCLATURE 

energy per unit area per unit time 
normal to direction of incident 
radiation. For sunlight it is the 
solar constant at the location of 
the reflecting surface : 
reflectivity of reflector ; 
energy flux incident on unit area 
of receiver ; 
Cartesian unit vectors ; 
unit vector which specifies direc- 
tion of incident radiation ; 
unit vector which specifies direc- 
tion of reflected radiation ; 
outward unit normal to reflecting 
surface : 
angle of incidence on reflecting 
surface ; 
Cartesian coordinates of reflecting 
surface ; 
polar cylindrical coordinates of 
reflecting surface ; 
equation of reflecting surface ; 
equation of receiver surface ; 
i&: ratio of x component to z 
component of unit vector which 
specifies direction of reflected 
radiation ; 

f2> 

J(e, R), 

~,,l,, 12, 

; 

&I, 

R rib, 

4 

i;/ik : ratio of y component to z 
component of unit vector which 
specifies direction of reflected 
radiation ; 
Jacobian determinant connecting 
dxdy of reflector with dXdY of 
receiver ; 
A, abbreviation for parts of general 
Jacobian, see equation (2); 
cone half angle ; 
angle between i and J for radiation 
incident upon cone ; 
base radius of reflector (cone, 
paraboloid or hemisphere) ; 
dimensionless reflector radius vec- 
tor in units of R, ; 
2 coordinate of intersection of 
receiving plane normal to z-axis. 

I. INTRODUCTION 

IN [l] a general, analytical formula is derived 
which gives the flux per unit area on an arbitrary 
receiving surface for incident radiation specularly 
reflected from a curved surface. The general 
results are specialized to the particular form 
applicable to a reflecting surface with axial 
symmetry. In this paper we shall apply the latter 

281 



282 DAVID L. SHEALY and DONALD G. BURKHARD 

formula to calculate the flux density contours on 
a planar receiver surface after plane wave 
radiation is specularly reflected from a cone, a 
paraboloid of revolution and a hemisphere. In 
the case of the cone the formulas will be specia- 
lized to apply to any planar receiver, that is, the 
receiver plane may have any position or orienta- 
tion with respect to the reflecting cone. The 
formula for flux density will then be inverted so 
that one can calculate directly the coordinates 
of equal flux density on the receiver surface for a 
specified value of the received flux. This makes 
possible the direct computation of heat flux 
contours on the plane. For the paraboloid and 
hemisphere the receiver plane will be specialized 
to a plane perpendicular to the symmetry axis of 
the reflecting surface. The flux flow equation 
will be inverted in each case so that direct 
analytical computation of flux contours over any 
plane perpendicular to the symmetry axis is 
possible. 

The llux density at position X, Y on the sur- 
face Z = 2(X, Y) for plane wave radiation 
which has been specularly reflected by a surface 
which has axial symmetry about the z-axis, that 
is, for the surface z = z(r) is given by equation 
(15) of fl]. 

b== SOP cos p[(az/ar)2 + 11’ 
rw/m2 + (az/aYy + l]++, @)I (l) 

where 

J(r, 8) = [lo + (2 - z)I, + (Z - z)‘f&A (2) 

and 

10 = 1 - (az/8r) (fl cos 8 + f2 sin 8) 

The equation of the line representing the 
specularly reflected ray in polar coordinates 
(x = r cos 0, y = r sin A, z = z) is given by 

X - rcosft 

Z(X, Y) - z(r) 
= !k!!?! G fi(r, 0) 

iL(r, 0) 
(3a) 

Y - r sin f) 
-~- = $$ E fi(r, @). 
Z(X, Y) - z(r) 

(3b) 
z , 

The direction of the reflected ray i’ is given in 
terms of the normal to the surface S, and the 
direction of the incident ray i by the law of 
reflection which yields 

i’ = -2n(n. i) + i. (4) 

The preceding formulas are perfectly general 
in the sense that the source of radiation may be 
a plane wave, a point source or extended source 
by integrating over the sources. so is simply the 
flux density at the element of reflecting surface 
whatever the source may be. The form offi and 
,fz will be determined by the kind of source, that 
is whether it is plane wave or point source. f, 
and fz also depend on the shape of the reflector 
surface. 

II. SPECULAR REFLECTION FROM CONE TO 
PLANAR RECEIVER 

In order to apply equations (l)-(3) one must 
specify : 
(if The equation of the reflecting surface which 
we consider to be the cone z = r cot ct where r 
is radius of cone measured from z-axis and cf is 
the cone half angle. 
(ii) The direction of incident radiation, i, which 
we now consider to he parallel rays from infinity 
in the xy plane and inclined at an angle fl with 
respect to the y axis : 

i = - cos /Al - sin PK (5) 

where (I, J, K) are the Cartesian unit vectors. 
(iii) The equation of the receiver surface which 
we first consider to be a plane normal to the 
z-axis is Z =rt where d is the distance of the 
plane from the origin. We shall then modify the 
formulas to allow the receiver surface to be an 
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arbitrary plane given by Z = D - AX - BY 
A, B and D are constants. 

The unit normal to reflecting surface is given 

by 

n = coscccosOZ + cosasinRJ - sinclK (6) 

where (Y, @) are polar coordinates of reflecting 
point (see Fig. 1). Applying equation (4) along 
with (5) and (6) to determine the direction of the 
reflected ray, i’, one obtains for fr( = it&) and 
f2( = i;./iL) 

.fi = 
AcosesintI - Bcos@ 

C- Dcos@ ' 

.f2 = 
A sin28 - Bsin l3 - cosp 

C - DcosB (7) 

where A = 2 cos2 a cos /II; B = sin (2~) sin /II; C 
= - cos (2~) sin /I; and D = sin (2a) cos /?. It 
should be noted that in the present case both 
f, and f2 are functions only if the polar angle 8; 
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FIG. la. Contours of equal heat flux for radiation specularly 
reflected from cone to plane Z = 0. Flux values associated 
with contours represent per cent of incident radiation density 
in all figures. The, reflectivity p is taken as 1 for all angles of 
incidence. The contours are symmetrical with respect to the 

Z. Y plane in all the figures. 
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FIG. I b. Contours of equal heat llux for radiation specularly 
reflected from cone to plane Z = 0. 
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FIG. Ic. Contours of equal heat flux for radiation specularly 
reflected from cone to plane Z = -0.5cot a where the unit 

of length is the cone base. 
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FIG. Id. Contours of equal heat flux for radiation specularly 
reflected from cone to plane Z = -O.Scot CI where the unit 

of length is the cone base. 
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- --a=30+,@;20- 

FIG. If. Contours of equal heat Bux for radiation specularly 
reflected from cone to plane Z = +O.Scot CI where the unit 

of length is the cone base. 

for a more general surface, both f; and fz will 
be functions of r and 8. In the present case 
A = 1 and the Jacobian reduces to 

J = Z,(G) f (d - r cot a) Z,(@)/r (8) 

where 

IO = (cot a sin 0 - tan ~~~~~0s 2cz tan fi 

+ sin 2a sin @) 

I, = 12 cos’ a sin 2/j sin 8 

@a) 

: 

h I 

500- 2 I I73 
~ I.@ 

600 
ljdO 

2 

7 00 - ff;i5”, p-o* 

---~z,y,p;20’ 

FIG. le. Contours of equal heat flux for radiation specularly 
reflected from cone to plane Z = + O-Scot c1 where the unit 

of length is the cone base. 

- 2 cot a ~0s’ p (~0s’ ff sin2 @ f cos2 et 

P - 
2 sin 2ff sin’ $j/[cos 2a sin {j 

+ sin 2a cos p sin 81’. (gb) 

Combining (8) with the flux flow equation (l), 
and noting that cos p = cos c1 cos /? sin P - sin 
a sin fi, ([@z/&Q2 + I]* = csc cr, and [(dZ/aX)’ 
+ (dZ/;lY)’ + lJ* = 1, one obtains the follow- 
ing expression for the flux per unit area on the 
receiver surface : 



HEAT FLUX CONTOURS 285 

d =I soPr (cot 01 cos {j sin 8 - sin 0) 

4-[r(l, - I, cot a) 
-_--- (9) 
+ I,Z] 

where the “f ” or “- ” sign is chosen such that 
the flux density, &?* is positive and 2 = d. Note 
that if d = 0, that is, the receiver plane is 2 = 0, 
the flux per unit area on the receiver surface is 
independent of the radial coordinate of the 
reflecting point, and as a result, the contours of 
equal illumination are straight lines as shown 
in Figs. la and lb. The loci of points on the 
receiver surface are found by using the equations 
of the reflected light ray for diRerent values of r 

and ft. These equations are : 

X = rcos@ + (2 - rcota)f, (104 

I’ = r sin 8 + (2 - r cot a& UW 

where fi and f2 are given by equation (7) and 
(X, Y) are receiving coordinates. 

When d # 0, equation (9) along with (Sa) and 
(8b) is an explicit expression for the flux per unit 
area on the receiver surface. In order to calculate 
contours of equal flux on the receiving surface, 
one assigns a definite value to (B/s,) in equation 
(9) and then solves the three equations (9b (lOa) 
and (lob) simultaneously for the coordinates 
X, Y on the desired contour to obtain 

region of interest on the receiver plane so that 
physically possible values for (&/so) are used in 
(1 la) and (llb). Equal flux contours are shown 
in Figs. lc-lf for various values of d and CX. Flux 
contours are expressed as per cent of incident 
radiation density. The reflection coefficient p is 
taken as 1 for all angles of incidence. In practice 
p will depend upon the angle of incidence and 
polarization of the incident radiation as given 
by Fresnel’s equation. This correction can be 
taken easily into account [l]. We have employed 
the Fresnel correction for unpolarized radiation 
incident on an aluminium cone and find the 
shift in the value of a contour to range from one 
or two to several per cent. 

A study of the heat flux over a receiver plane 
truncating a cone was motivated by the need to 
know the solar flux reflected from the cone and 
incident upon instrument boxes mounted on the 
plane. The cone was part of a rocket conligura- 
tion, With slightly more effort one can calculate 
the exact flux incident upon rectangufar boxes 
on the plane simply by specifying the coordin- 
ates of the corners of the boxes. 

We now modify the previous results to allow 
the receiver surface to be the general plane 
2 = D - AX - BY instead of the particular 
plane 2 = d, the appropriate Jacobian, equation 
(2), is 

k(8/so)l ,d(cos P -f,(S) cot a) 

x = [p(cos p/ . sin 4 T (b/s,) (1, - I 1 cot a)] 
+ fi(@)d Ula) 

Y= 
f (&/lso)l ,d(sin 8 -f,(B) cot R) 

[p(cos F/sin a) f (&/is,) (1, - f 1 cot a)] 
+ .L(@)d. (Ilb) 

X(e), Y(O)givenby(lla)and(llb)areparametric J = [r,(e) 
equations for the coordinates of a given contour + (D - AX - BY - rcot a)ll(@)/rJ/A (12) 
(a given value of &/so), on the surface 2 = d. 
The parameter B is the polar angle of a reflecting where f,, I, are given by (8a) and (8b). And now 
point on the cone. Before assigning values to A(0) = 1 + Aft(@) -t B_&(B) where fi, f’ are 
&/so in (1 la) and (1 lb) one should use equation given by (7). The flux flow equation (1) is 
(9) to calculate typical values for 6/s, over the changed to 
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8 = ____.-- 
s,pr(cot cx cos /j sin 8 - sin /j)A(O) 

f [Y(I, - I, cot M) i(DE - BY)],] [A2 + B2 + 11” 
(13) 

where the “+ ” or “ - ” sign is chosen such that is of the same form as the Jacobian obtained for 

the flux is positive. Replacing Z in (lOa) and specular reflection from a cone to a plane, 
(lob) by D - AX - BY and then eliminating I equation (8). The only difference is in the 

from (10a) and (1 Ob) and (13) gives an expression functional form of the equation of the receiver 

for X and Y in terms of 0. surface Z = Z(X, Y). Combining equation (15) 

X(N) = h,(O)D/(l + h,(0)A + k,(B)B) 

Y(e) = k,(O)D/(l + k,(8)A + k,(O)B) 

(144 
with equation (I), one obtains the following 
expression for the flux per unit area on the 

(14b) general curved receiver surface : 

s,pr(cot cc cos /, sin I) - sin /j) 1 A 1 

’ = --& rr(l, - I, cot(x) + Z(X, Y)l,][(aZ/aX)’ + (aZiaY)2 + l]+ 
(16) 

where 

k,(e) = f, f l,(d/s,)(cos 0 - .ft cot K) 

(A2 + B2 + 1)+/g(0) 

k2(H) = ,f2 i 1,(&/s,) (sin 0 - f2 cot (x) 

and 

(A2 + B2 + 1 P/g(e) 

g(0) = PA(@) (cos #in Co i (a/s,) 

(I, - 1 1 cot %)(A2 + B2 + l)+. 

If the upper sign is taken in (13) then the upper 

sign applies in k, and k2. Likewise for the lower. 

III. SPECULAR REFLECTION FROM COYE TO NON- 
PLANAR RECEIVER 

In the preceding section we have described a 
procedure for calculating contours of equal 
illumination when the incident radiation is 

specularly reflected from a cone to a plane. We 
shall now describe how this procedure is modi- 
fied when the receiver surface is nonpianar. The 
functionsf, and f2 are still given by (7); whereas, 
the Jacobian from equation (2) takes the form 

J(R, 0) = [I, + (Z(X, Y) - fc.0t a)l,/r] 

[l - f;@Z@X) - f;(az,/aY] (15) 

where I, and I 1 are given by equations @a) and 
(8b). Note that the numerator of equation (15) 

where A = 1 - f;(aZ/aX) - f,(aX/a Y) and the 

“+” or “-” sign is chosen such that the flux 

is positive. The procedure for calculating con- 

tours of constant illumination on the receiver 
surface has been previously described. One 
assigns a definite value to (a/s,) in equation 

(16) and then solves equation (16) and the two 

equations (3a) and (3b) representing the reflected 
light ray which become 

X = r cos 0 + (Z(X, Y) - r cot a)f; (17a) 

Y = r sin 0 + (Z(X. Y) - r cot a)fz (17b) 

simultaneously for the receiver coordinates X, 
I: For most non-planar surfaces it will be neces- 

sary to solve equations (16) (17a) and (17b) 
numerically for X, Y by using, for example, 
Newton’s iteration procedure for solving non- 

linear systems of equations [2]. 

IV. SPECULAR REFLECTION FROM A PARABOLOID 
TO A PLANAR RECEIVER 

In this section we shall consider the reflecting 
surface to be the paraboloid z = R,R2 cot c( 
where R is the radius of the paraboloid mea- 
sured from the z axis in units of R,. R, is the 
radius of the base which we shall consider to be 
unity and a is the angle between the z-axis and 
a line drawn from the origin to the base of the 
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paraboloid. The receiver surface will be con- 
sidered to be the plane Z = d where d is a con- 
stant, and the direction of the incident parallel 
radiation is given by 

i = - COSPJ - sinfiK. (18a) 

The outward unit normal to the reflecting surface 
is given by : 

n = (2Rcotacos8Z + 2Rcotasin8J -K)/ 

(1 + 4R2 cot’ a)*. W.4 

fi( 3 i!JiL) and fi( = i&) are given by 

f2 = 

- AR2 cos 20 - BR sin 6 - cos fl 

sin /3 - CR2 - DR sin 0 (184 

where A = 4cot’acosp; B = 4cotasin/?: C 
= 4 cot’ a sin 8; and D = 4 cot a cos #I. After 
performing the appropriate partial differentia- 
tion, the expression for the Jacobian given by 
equation (2) becomes : 

J(R, 0) = I,(R, f3) + (Z - z)I,(R, 0) 

+ (Z - 2)‘1,(R, e) 

where 

I, = [(l + 4R2 cot’s) 

(sin /? - 2R cot a cos /3 sin @]/I, 

I, = 4cota[2Rcotasin2/?sine 

x (1 + 4R2 cot’ a) - 8R2 cot’ a 

x (1 + 2R2 cot’ a cos’ /?) 
- sin’ /? - 1]/12 

I2 = 16 cot’ a [(l + 4R2 cot’ a) 

x (sin b - 2R cot a cos /j’ sin @l/l? 

(19) 

(19a) 

. ’ 

d = sop (2R cot a cos fl sin 0 - sin j?) 

*[lo + (Z - z)I, + (Z - z)21,] (20) 

where “+ ” or “-” sign is chosen so that flux 
is positive. In principle one can now calculate, 
as described in section II, flux density contours. 
However, the algebra is more involved. Assign- 
ing a definite value to (6/s,), one obtains a 
polynomial in R by rearranging (20) with the 
aid of FORMAC* in the form : 

iio aiRi = 0 (21) 

where the coefficients a, are given in Appendix 1. 

WC) FIG. 2. Contours of equal illumination for light specularly 
reflected from paraboloid to plane 2 = -0.5 in units of 

with the abbreviation I, = sin fl(l - 4R2 cot’ a) 
the base radius of the paraboloid. Flux values associated 
with contours represents per cent of incident radiation. 

- 4R cot a cos /I sin 8. Combining (19) with Reflection coeffkient is regarded as constant and equal to 1. 
the flux flow equation (1) and using cos p = 
(2R cot a cos /3 sin B - sin b)/(l + 4R2 cot’ a)* ; 
[(iTz/dR)’ + l]* = (1 + 4R2 cot’ a)* and 

* FORMAC Interpreter is an extension of the OS/360 

[(dZ/dX)2 + (i?Z/aY)’ + l]* = 1, one obtains 
PL/I(F) compiler which provides for the symbolic manipula- 
tion of mathematical expressions [3]. 
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The problem is to solve (20) for R as a function 
of 0 and substitute the result into (3a) and (3b) 
to obtain the coordinates X, Y of the desired 

contour. Since an analytical expression for R is 

not possible in this case, the real and imaginary 

roots of equation (21) were obtained for given 

values of a, /I, (&j/s,,), Z( = d) and H by using the 

Newton-Ralphson iterative techniques as des- 

scribed in the IBM Scientific Subroutine Package 
Program POLRT [4]. The real and physically 

possible roots were then used to determine the 

receiver coordinates X, Y for a series of values 
of 0. Typical constant heat flux contours for 

r = 45 degress and 1) = 0,20 degrees are shown 
in Fig. 2. The flux values are expressed as per cent 

of incident radiation flux density. The reflection 

coefficient is regarded as constant and equal to 1. 

J(R, 0) = I,(R, 0) + (Z - ,_)I ,(R, 0) 

+ (Z - z)‘l,(R, 0) 

where 

1, = 

I, = 

X 

I, = 

X 

+ 

X 

V. SPECULAR REFLECTION FROM HEMISPHERE 
TO PLANAR RECEIVER 

with 

2R(l 

(sin /j - R(l - R*)-’ cos j sin @)/I; (23a) 

[2R sin 2/I sin B + 2(1 - R*)-* 

[R2(sin2 /j - cos* /S sin2 0) 

- sin’ /j - l]}/If (23b) 

{2Rsin2Psin @(l - R’)-” 

[- 3 + 4R2 + R2 cos2 /j sin 28 (1 - R2)*] 

4 sin* p (1 - 2R2) + 8R2 cos* /$ sin* 0 

[sin* H + R* cos’ fI x (1 + 2 sin’ /S 

x (1 + &))I$/14 (23~) 

the abbreviation I, = (1 - 2R2) sin [j - 

- R’)-” cos /I cos 8. Combining (23) with 

Now we shall consider the reflecting surface 

to be the hemisphere z = R,(l - (1 - r’/Ri)*) 

where r is the radius of hemisphere measured 
from the Z axis and R, is radius of base which 

we shall consider to be unity. The receiver 
surface is again the plane Z = u’ where d is a 
constant. For convenience, we put R = r/R,. 

The incident radiation is given by 

the flux flow equation (1) and using cos CL = 
R cos /j sin 0 - sin p (1 - R’)“, [(I!YZ/~R)~ + 11” 

= (1 - R2)-* and [(aZjaX)2 + (az/aY)* + I]+ 
= 1, yields the following expression for the flux 
per unit area of receiver surface 

d = .soPIR cos p sin @ (1 - R*)-’ - sin /I] 

.+[I, + (z - -‘)I, + (z - +1,] 
(24) 

i = -cos/U - sinPK. (22a) 

The outward normal to the reflecting surface is 

n = R cos 01 + R sin @J - (1 - R’)*K. (22b) 

The direction of reflected ray is determined 

from (4). Then fr( = ii/i:) and .fi( = il./i:) are given 

by 

.fl = 
CR2 sin 20 - 2AR(l - R2)” cos 6 

-2CR(l - R2)* sin 0 + A(1 - 2R2) 

(22c) 

where the ” + ” or “- ” sign is chosen so that 

the flux is positive. The flux flow equation (24) 
for specified (B/s,) is again rearranged into a 

more manageable polynomial expression by 
means of the FORMAC program to yield : 

9 8 

ids U~R’ + (1 - R2)’ C hiR’ = 0 (25) 
j=O 

where the coefficients ui, hi are given in Appendix 
2. 

2CR* sin2 19 - ZAR(1 - R2)* sin 0 - C 
f; = - _____~ 

-2CR(l - R*)* sin @ + A(1 - 2R*) 

where A = sin /I and C = cos 1). After perform- 
ing the appropriate partial differentiation, the 
expression for the Jacobian given by equation 
(2) becomes. 

The flux flow equation in the form (25) can 
now be solved simultaneously with the equation 
for the coordinates X, Y to obtain the loci of 
points of constant flux on the receiver plane. 
The angle 0 again plays the role of a parameter. 
Typical constant illumination (constant heat 
flux) contours for /5’ = 0 and 20 degrees are 
presented in Fig. 3. Contours are expressed as 

(23 
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FIG. 3. Contours of equal heat flux for radiation specularly 
reflected from hemisphere to plane Z = - 0.5 in units of the 
radius of the hemisphere. Flux values associated with con- 
tours represents per cent of incident radiation. Reflection 

coefficient p is one for all angles of incidence. 

percentage of incident flux density; reflection 
coefficient is taken as 1 for all angles of incidence. 

CONCLUSION 

A simple, exact analytical procedure has been 
developed which enables one to calculate the 
flux density over an arbitrary receiver surface 
for incident radiation reflected from an arbitrary 
curved surface. As’examples, flux contours are 
calculated over a planar receiver surface for 
parallel radiation from a cone, a paraboloid and 
a hemisphere. With equal ease one can calculate 
flux contours over a curved receiver surface. The 
procedure should enable one to obtain exact 
solutions to specular radiant heat transfer prob- 
lems not previously analytically tractable. 
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APPENDIX 1 

The coefficients ai appearing in the polynomial expression 
(21) for the flux flow equation when reflecting surface is 
paraboloid of revolution are: 

a, = p sin4 /j -t (J/s,) sin /j(l - 42 cot a) (sin’ /j - 42 cot a) 

a, = - 2 cos /j cot a sin 0{sin3 j?[7 + 5(8/s,)] 

+ 82 sin 2/j cot c&?/so) + 162” cot’ a(b/r,)) 

a2 = 4 sin /j cot’ a{( 1 + 8 co? /s sin’ 8) (&/sc) 

+ 3p sin /$(6 co? [j sin’ 0 - 6 sin’ /<) 

- 42 cot a(3 - sin2 /j + 4 cos’ [$ sin’ 0) (&?/,sO) 

+ 162’ cot* rx(&‘/s,)} 

a3 = 8 cos /j cot3 a sin @{ -(2 + 3 sin’ /j + 4 co? /? sin’ @0(/s,) 

+ Sp sin /j(3 sin’ /I - 4 co? [j sin’ 8) 

+ 242 cot r(B/s,) - l&Z* cot’ r(&/js,)l 

a4 = 16 cot4 ajp(3 sin” p-6 sin’ (2/Q sin2 @+8 sin4 0 eos’j?) 

+ sin Z/? cos /I(1 + 4 sin’ 0) (1 - 22 cot r) (&/r,)j 

a5 = 8 cot’ 8 sin O(6 sin 2/{(4 cos“ /j sin* B - 3 sin’ /j) 

_ 4 cos3 p(5 + 4 sin* B) (&/is,,) + 642 cos /j cot a(&‘/,~)} 

a6 = 64 sin /j cot’ a(~ sin /j(6 co? /I sin* tJ - sin” /j) 

+ 4 cosz p cot !zzj 

APPENDIX 2 

The coeflicients a, bj appearing in the polynomial ex- 
pression (25) for the flux flow equation when the reflecting 
surface is a hemisphere are : 

a, = 2(&?/Q sin’ (i(sin* [j - 3) (1 - Z) 

a, = 0.5 sin 28 sin O(($/s,) [S sin2 !I - 4(3Z2 - 6Z + 4)] 

- 9p sin3 /j) 

a2 = 2(&//a,)( 1 - 2) [sin’ /j(8 - 5 sin’ /?) 

+ cos* fi sin’ O(4 - 13 sin’ /i - 8 sin’ 0)] 
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a, = 2 sin 2/j sin @((&/ls,[O2.5 sin’(2/{) h, = (6/,s0) sin2 /j(4Z* - 82 + 6 - sin* /i) + p sin’ J 

- 4 sin2 /I - 3 + (4 + cos2 /i sin 20) h, = 2(b/.s0) sin 2/J sin 0( 1 - Z) (4 - 3 sin’ /1) 

x (22 - 22 + 2)] 

+ 2p sin /1[8 sin* /I - 7 cos’ /j sin* @I) 
b, = 4(B/s,)jsin* fi(sin’ /I - 2 cos2 /j sin* 0 - 2Z2 + 4Z - 3) 

a., = - 8(&/s,) (1 - Z) jO25 sin* (2/j) 
+ C0S2 /j sin’ H[- 2 + 4 sin* fJ(l - Z) + 22 sin’ ()I) 

+ co9 /I sin* B[l + sin* /I(9 + 4 ~0s’ 0) 
+ Xp sin3 /{(4 cos’ /I sin’ 0 - sin’ /I) 

- sin’ ($2 + cos* /j) + 2 cos* 01) h, = 4(ff/js,) sin 2/j sin ($1 - Z) (5 sin’ /I - 3 cos’ ii sin’ 0 

a5 = 2(&/s,) sin 2/1 sin 8[3 sin3 /j - cos2 11 sin’ I) 
- cos’ /i sin 28 - 2) 

- 2 ~0s’ /i sin 2f3(5 - 42 + 2Z*)] h, = 4(l/s,){ - sin4 /j + cos’ /j sin’ H[2 + 3 sin’ /j 

- 8p cos /I sin H[2 cos“ /j sin’ 0 + 21 sin3 /I - 8 sin’ H + 2 cos’ 0( 1 + 2 sin’ 11) 

- 7.75 sin’ (28) sin’ O] x (2’ - 22 - 2)]} + 6p sin /1[4 sin4 /j + 8 COP/~ sin4 (t 

a6 = - 8(&/s,) (1 - Z) [sin4 /j + cos2 /j sin’ R(6 sin* p - 5.25 sin’ (2/j) sin O] 

+ co? 11 sin’ @ - cos* O)] 

a, = 8(&/s,) sin /I cos3 /I sin’ 0 cos 0(4 - 22 + Z’) 
h, = 16(8/.s,) sin 2/J sin S( 1 - Z) (co? /I sin* (1 

+ 32~ cos /I sin @[6 sin“ /j - 2.75 sin2 (2/j) sin’ 0 
- sin2 /i - @5 cos’ /i sin 20) 

_ cos4 ,] sin4 Ed b, = &F/s,) cos2 /i sin’ (2@)[2 sin2 p(l - Z)’ - I] - 32 sin /i 

as = 2 sin* (20) sin2 (28) (1 - Z) 
x [sin4 /i + 4 cos4 /j sin4 0 - 2.25 sin’ (2p) sin2 01 

a, = + 8 cos /j sin @[(b/s,) sin /j cos2 p sin 20 h, = - 16(1/s,) sin /j cos’ /I sin’ H cos 0( 1 - Z) 

+ 2p(5 sin4 /j - 2.5 sin’ (2/j) sin’ @ h, = (g/d,,) sin’ (2/j) sin’ (20) + 16~ sin /{[sin“ /i 

+ cos4 fi sin4 8)] + 5 cos4 /j sin4 B - 2.5 sin’ (2/j) sin’ H] 

FLUX THERMIQUE SUR UN PLAN POUR UN RAYONNEMENT PARALLELE 
SPECULAIREMENT REFLECHI PAR UN CONE, UN HEMISPHERE ET UN 

PARABOLOIDE 

R~IUIIB- Des formules explicites sont ttablies pour le flux thermique par unite d’aire d’une surface 
receptrice gtntrale apres qu’un rayonnement incident parallele soit rifl&chi speculairement par un cone, 
un paraboloIde de revolution et par un hemisphere. Les formules de la densitt de flux sont inversees de 
telle sorte que les coordonntes des points sur la surface rtceptrice sont exprimbes en fonction de la densite 
de flux. Ceci donne des expressions analytiques pour la repartition de la densite de flux. On presentc des 
rbsultats typiques de repartition constante sur une surface rtceptrice plane perpendiculaire a l’axe de 

symetrie du rtflecteur. 

LINIEN KONSTANTEN WARMESTROMES AUF EINER EBENE FUR PARALLELE, 
SPIEGELND REFLEKTIERTE STRAHLUNG VON EINEM KEGEL, EINER 

HALBKUGEL UND EINEM PARABOLOID 

Zusammenfaswng- Es werden explizite Gleichungen abgeleitet ftir die Warmestromdichte auf einer 
allgemeinen Empfangeroberfllche, ftir parallel einfallende, spiegelnd reflektierte Strahlung von einem 
Kegel, einem Rotationsparaboloid und einer Halbkugel. Die Gleichungen fiir die Warmestromdichte 
werden so aufgelost, dass die Koordinaten eines Punktes auf der Empfangerfllche von der Stromdichte 
abhlngen. Dies ergibt geschlossene analytische Ausdriicke ftir die Linien konstanter Warmestromdichte. 
Typische Ergebnisse wurden als Linien konstanter Beleuchtung gezeichnet auf einer ebenen Empfanger- 

fllche. die senkrecht zur Symmetrieachse des Reflektors steht. 
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tJIklHMl4 HOCTOHHHOI’O TEIIJIOBO~O 1IOTOKA IIX HJIACTMHE IIPM 
SEPICAJIbHOM OTPAltCEHkiM HAPAJIJIEJIbHOI’O kl3JIYWGHHR OT KOHYCA, 

HOJlYC@EPbI Id HAPAEOJIOkl&4 

AHHOTa~WI-IIOJIyYeHbI t)jOpMyJIbI B FIBHOM BllRe ;iJIR y~eJIbHOI.0 TeIl.7IOBOI'O nOTOK HEI 

emHIlIIy nnowa~ll noBepxHocTkf nplleMHMKa npu 3epriazIbKor4 oTpairteIw4 mocKor na~alo- 

IIlero II:myveHm ~o~yconf , napa6onoll~oM upaqeam PI IIoq@epori. @opmynbI 2.3~ 

IlJIOTHOCTll IIOTOKa IIpeO~pa:~OBaHbl TaKHM dpa:3OM, qT0 KOOp~llH~~TIJ TOqeK IIOIN'[)XHOCTLl 

IIpHeMHHKa BbIpaxeHbI 'Iepe'b IIJIOTHOCTb nOTOKa. 3TO nO311011~1J10 IIOJIJWlTb :%~\lKIlyTbIe 

aIIamTIlveCIi~e BbIpaHEeHMR &ZR JIMHISti nOCTORHHOti IIJIOTIIOCTM IIOTOKa. r~IllIIl~IHbIe 

pe3yJbTaTbI IlpeiJCTaBJIeHbI Ha npa@lKaX B BllAe JIllHMti nOCTORHHOii OCBe~eIIHOCTI1 Ha 

IlZIOCKOii IlOBepXHO~T~l IlpliCMHkiKa, neplIeH~tlKj'JIflpHO$i OCII CIlMMeTPMM OT~'aPKtWeJIH. 


