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HEAT FLUX CONTOURS ON A PLANE FOR PARALLEL

RADIATION SPECULARLY REFLECTED FROM A CONE, A
HEMISPHERE AND A PARABOLOID
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Department of Physics and Astronomy. University of Georgia. Athens. Georgia. U.S.A.
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Abstract— Explicit formulas are derived for the heat flux per unit area on a general receiver surface after
planar incident radiation is specularly reflected from a cone. a paraboloid of revolution. and a hemisphere.
The formulas for flux density are inverted so that the coordinates of receiver points on the receiver surface
are expressed in terms of flux density. These provide closed analytical expressions for flux density contours.
Typical results are plotted as contours of constant illumination on a planar receiver surface which is per-
pendicular to the axis of symmetry of the reflector.
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NOMENCLATURE

energy per unit area per unit time
normal to direction of incident
radiation. For sunlight it is the
solar constant at the location of
the reflecting surface ;

reflectivity of reflector;

energy flux incident on unit area
of receiver;

Cartesian unit vectors;

unit vector which specifies direc-
tion of incident radiation;

unit vector which specifies direc-
tion of reflected radiation;
outward unit normal to reflecting
surface :

angle of incidence on reflecting
surface;

Cartesian coordinates of reflecting
surface ;

polar cylindrical coordinates of
reflecting surface ;

equation of reflecting surface;
equation of receiver surface;

ii/iz: ratio of x component to z
component of unit vector which
specifies direction of reflected
radiation ;
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o iy/iz: ratio of y component to z
component of unit vector which
specifies direction of reflected
radiation;

J(0, R), Jacobian determinant connecting
dxdy of reflector with dXdY of
receiver ;

Iy, 14, 1,, A abbreviation for parts of general
Jacobian, see equation (2);

o, cone half angle;

B, angle between i and J for radiation
incident upon cone;

R,, base radius of reflector (cone,

paraboloid or hemisphere);
R,r/R,, dimensionless reflector radius vec-
tor in units of R, ;
d, Z coordinate of intersection of
receiving plane normal to z-axis.

1. INTRODUCTION

IN [1] a general, analytical formula is derived
which gives the flux per unit area on an arbitrary
receivingsurface for incident radiation specularly
reflected from a curved surface. The general
results are specialized to the particular form
applicable to a reflecting surface with axial
symmetry. In this paper we shall apply the latter
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formula to calculate the flux density contours on
a planar receiver surface after plane wave
radiation is specularly reflected from a cone, a
paraboloid of revolution and a hemisphere. In
the case of the cone the formulas will be specia-
lized to apply to any planar receiver, that is, the
receiver plane may have any position or orienta-
tion with respect to the reflecting cone. The
formula for flux density will then be inverted so
that one can calculate directly the coordinates
of equal flux density on the receiver surface for a
specified value of the received flux. This makes
possible the direct computation of heat flux
contours on the plane. For the paraboloid and
hemisphere the receiver plane will be specialized
to a plane perpendicular to the symmetry axis of
the reflecting surface. The flux flow equation
will be inverted in each case so that direct
analytical computation of flux contours over any
plane perpendicular to the symmetry axis 1s
possible.

The flux density at position X, ¥ on the sur-
face Z = Z(X,Y) for plane wave radiation
which has been specularly reflected by a surface
which has axial symmetry about the z-axis, that
is, for the surface z = z(r) is given by equation
(15)of [1].

1
&= ]

sop cos u[(dz/0r)* +

(1)

[(0Z/0X)? +(8Z/0Y)? + 1]} [J(r. 0)]
where
Jroy =l +(Z - 2L +(Z - 2’LYA ()
and
Iy =1—(0z/0r)(f,cos 8 + f,sin 6)

r ¢l

+ sin 0 (% - 1%)
1 62 <f26f1 fléfz)

I = [(5f 1/0r) (8f,/06) — (0f1/06) (8f/or))/r
A=1— fi(8Z/0X) — fLl0Z/dY)
fy = 000 f = iy

L= cos@(afr‘ + lafz)
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The equation of the line representing the
specularly reflected ray in polar coordinates
{x =rcosf,y=rsinb, z=z)is given by

X —rcos@  ifr, )

Z(X,Y) = zr)  idr, 0) = fi(r,0) (3a)
Y —rsinf  iyr,0) _
Z(X,Y)— z(r) i, 8) falr, ). (3b)

The direction of the reflected ray # is given in
terms of the normal to the surface S; and the
direction of the incident ray i by the law of
reflection which yields

= —2n(n.i)+i. (4)

The preceding formulas are perfectly general
in the sense that the source of radiation may be
a plane wave, a point source or extended source
by integrating over the sources. s, is simply the
flux density at the element of reflecting surface
whatever the source may be. The form of f| and
f> will be determined by the kind of source, that
is whether it is plane wave or point source. f;
and f; also depend on the shape of the reflector
surface.

1. SPECULAR REFLECTION FROM CONE TO
PLANAR RECEIVER

In order to apply equations (1)-(3) one must
specify :
(i) The equation of the reflecting surface which
we consider to be the cone z = r cot o where r
is radius of cone measured from z-axis and « is
the cone half angle,
(ii) The direction of incident radiation, i, which
we now consider to be parallel rays from infinity
in the xy plane and inclined at an angle f with
respect to the y axis:

i = — cos fiJ — sin K (5)

where (I, J, K) are the cartesian unit vectors.

(iii) The equation of the receiver surface which
we first consider to be a plane normal to the
z-axis is Z =d where d is the distance of the
plane from the origin. We shall then modify the
formulas to allow the receiver surface to be an
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arbitrary plane given by Z =D — AX — BY.
A, B and D are constants.

The unit normal to reflecting surface is given
by

n=cosacosOI + cosasinfJ —sina K

(6)

where (r, 6) are polar coordinates of reflecting
point (see Fig. 1). Applying equation (4) along
with (5) and (6) to determine the direction of the
reflected ray, i, one obtains for f (=i /iz) and
fo(=iy/iz)

Acosfsin — Beos
fi= C — Dcosf ’

f _ Asin® 0 — Bsin 0 — cos f
2 C —Dcosf

where A = 2cos®acos ff; B =sin(2u)sinf8; C
—cos (2a)sin 8; and D = sin(2a)cos f. It
should be noted that in the present case both
/1 and £, are functions only if the polar angle 6;

(7
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FiG. 1a. Contours of equal heat flux for radiation specularly

reflected from cone to plane Z = 0. Flux values associated

with contours represent per cent of incident radiation density

in all figures. The reflectivity p is taken as 1 for all angles of

incidence. The contours are symmetrical with respect to the
Z, Y plane in all the figures.
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FiG. lc. Contours of equal heat flux for radiation specularly
reflected from cone to plane Z = —0-5cot « where the unit
of length is the cone base.
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for a more general surface, both f; and f, will
be functions of r and 8. In the present case
A = | and the Jacobian reduces to

J = Iy(0) + (d — rcota) I(6)r (8)
where
I, = (cotasin@ — tan f)/{cos2utan f
+ sin 2a sin ) (8a)
I, = [2cos® asin 2B sin 0
— 2 cotacos? f(cos? asin? 8 + cos? )
— 2sin 2asin? f/[cos 2asin f§
+ sin 2acos fsin 6]%.  (8b)

Combining (8) with the flux flow equation (1),
and noting that cos g = cosacos ffsinf — sin
asin B, ([(9z/0ry* + 1] = csca, and [(8Z/3X)
+ (0Z/8YY + 11* = 1, one obtains the follow-
ing expression for the flux per unit area on the
receiver surface :
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P Sopr (cot o cos ff sin 8 — sin ff)
+[r(ly — I cota) + 1,Z]

©

where the “+ " or ““— 7 sign is chosen such that
the flux density, &, is positive and Z = d. Note
that if d = 0, that is, the receiver planeis Z = 0,
the flux per unit area on the receiver surface is
independent of the radial coordinate of the
reflecting point, and as a result, the contours of
equal illumination are straight lines as shown
in Figs. 1a and 1b. The loci of points on the
receiver surface are found by using the equations
of the reflected light ray for different values of r
and 6. These equations are:

X =rcos +(Z —rcota)f; (10a)

Y =rsinf +(Z —rcota)f, (10b)

where f; and f, are given by equation (7) and
(X, Y) are receiving coordinates.

When d # 0, equation (9) along with (8a) and
(8b) is an explicit expression for the flux per unit
area on the receiver surface. In order to calculate
contours of equal flux on the receiving surface,
one assigns a definite value to (£/s,) in equation
(9) and then solves the three equations (9), (10a)
and (10b) simultaneously for the coordinates
X, Y on the desired contour to obtain
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region of interest on the receiver plane so that
physically possible values for (&/s,) are used in
(11a) and (11b). Equal flux contours are shown
in Figs. 1c-1f for various values of d and o. Flux
contours are expressed as per cent of incident
radiation density. The reflection coefficient p is
taken as 1 for all angles of incidence. In practice
p will depend upon the angle of incidence and
polarization of the incident radiation as given
by Fresnel’s equation. This correction can be
taken easily into account [1]. We have employed
the Fresnel correction for unpolarized radiation
incident on an aluminium cone and find the
shift in the value of a contour to range from one
or two to several per cent.

A study of the heat flux over a receiver plane
truncating a cone was motivated by the need to
know the solar flux reflected from the cone and
incident upon instrument boxes mounted on the
plane. The cone was part of a rocket configura-
tion. With slightly more effort one can calculate
the exact flux incident upon rectangular boxes
on the plane simply by specifying the coordin-
ates of the corners of the boxes.

We now modify the previous results to allow
the receiver surface to be the general plane
Z =D — AX — BY instead of the particular
plane Z = d, the appropriate Jacobian, equation
(2), s

+(&/so)l 1d(cos 8 — f,(8) cot a)

~ [plcos p/sina) F (&/s0) (1o — 1, cot a)]
+ (&/5o) ¢d(sin 8 — f,(0) cot a)

- [plcos pfsin &) F (&/so) (1o — 1 cot a)]

X(8), Y(0) given by (11a)and (11b) are parametric
equations for the coordinates of a given contour
(a given value of &/sy), on the surface Z = d.
The parameter @ is the polar angle of a reflecting
point on the cone. Before assigning values to
£/s, in {11a) and (11b) one should use equation
(9) to calculate typical values for /s, over the

+ f1(6)d (11a)
+ £,(0)d. (11b)

J = [1o(6)
+ (D = AX — BY —rcota)l(0)r}/A  (12)

where I, I are given by (8a) and (8b). And now
AB) =1+ Af(6) + Bf{6) where f,, f, are
given by (7). The flux flow equation (1) is
changed to
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sopr(cot o cos fsin 8 — sin F)A(O)
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&= -
4 [r(ly — I, cota) + (D — AX — BN J[A> + B> + 1]

where the ““+ " or ““— " sign 1s chosen such that
the flux is positive. Replacing Z in (10a) and
(10b) by D — AX — BY and then eliminating r
from (10a) and (10b) and (13) gives an expression
for X and Y in terms of 0.

X(0) = hy(OD/(1 + hy()A + hy(6)B)
Y(6) = h,(0)D/(1 + hy(6)A + hy(6)B)

(14a)
(14b)

is of the same form as the Jacobian obtained for
specular reflection from a cone to a plane,
equation (8). The only difference is in the
functional form of the equation of the receiver
surface Z = Z(X, Y). Combining equation (15)
with equation (1), one obtains the following
expression for the flux per unit area on the
general curved receiver surface:

&=

) sopr(cot acos f3sin 0 — sin )| A|
+ [rlly — I, cota) + Z(X, V), ][(6Z/0X)* + (6Z/0Y)* + 1]*

(16)

where

h(0) = f; + 1,(&/se){cos O — f; cota)

(A% + B* + 1)¥/9(0)
hy(0) = f3 £ 11(&/so) (sin O — f; cota)

(A% + B> + 1)*/g(6)
and

g(0) = pA(8) (cos p/sin &) + (6/s0)
(I, — I, cota)(A* + B> + 1)%

If the upper sign is taken in (13) then the upper
sign applies in h, and h,. Likewise for the lower.

H1. SPECULAR REFLECTION FROM CONE TO NON-
PLANAR RECEIVER

In the preceding section we have described a
procedure for calculating contours of equal
illumination when the incident radiation is
specularly reflected from a cone to a plane. We
shall now describe how this procedure is modi-
fied when the receiver surface is nonpianar. The
functions f; and f, are still given by (7); whereas,
the Jacobian from equation (2) takes the form

J(R,0) = [y + (Z(X,Y) — scota)l,/r]/
[1 — f1(0Z/0X) — f,0Z/0Y]

where I, and I, are given by equations (8a) and
(8b). Note that the numerator of equation (15)

(15)

where A = 1 — f(0Z/0X) — f,(0X/0Y)and the
“4+ 7 or “— " sign is chosen such that the flux
is positive. The procedure for calculating con-
tours of constant illumination on the receiver
surface has been previously described. One
assigns a definite value to (&/sy) in equation
(16) and then solves equation (16) and the two
equations (3a) and (3b) representing the reflected
light ray which become

X =rcosl + (Z(X,Y) — recota)f,
Y =rsinf + (Z(X,Y) — rcota)f,

(17a)
(17b)

simultaneously for the receiver coordinates X,
Y. For most non-planar surfaces it will be neces-
sary to solve equations (16), (17a) and (17b)
numerically for X, Y by using, for example,
Newton’s iteration procedure for solving non-
linear systems of equations [2].

IV. SPECULAR REFLECTION FROM A PARABOLOID
TO A PLANAR RECEIVER

In this section we shall consider the reflecting
surface to be the paraboloid z = RyR?cotu
where R is the radius of the paraboloid mea-
sured from the z axis in units of Ry. R is the
radius of the base which we shall consider to be
unity and « is the angle between the z-axis and
a line drawn from the origin to the base of the
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paraboloid. The receiver surface will be con-
sidered to be the plane Z = d where d is a con-
stant, and the direction of the incident parallel
radiation is given by

i = — cos ffiJ — sin K. (18a)

The outward unit normal to the reflecting surface
is given by:

n={2RcotacosI + 2R cot asin 8J — K)/

(1 + 4R? cot? a)t. (18b)
fi(=iy/i) and f,(=i,/i) are given by
/= AR*sin20 — BRcos 0
' 7 sinf — CR* — DRsin 6’
—AR?cos 20 — BRsin 8 — cos
fo= LTS

sin f — CR?> — DRsin0

where A = 4cot*acos f; B =4cotasinf: C
=4 cot? a sin f; and D = 4 cot « cos f. After
performing the appropriate partial differentia-
tion, the expression for the Jacobian given by
equation (2) becomes:

JR,0) = I4(R,0) + (Z — 2)I (R, 0)

+(Z - 2 1,R,0)  (19)
where
Iy = [(1 + 4R? cot? o)
(sin B — 2R cot a cos f3 sin 6)]/1, (19a)
I, =4cota[2R cotasin2fsinf
x (1 + 4R? cot?a) — 8R% cot? a
x (1 + 2R? cot? a cos? f)
—sin?f — 1]/1% (19b)
1, = 16 cot® a [(1 + 4R? cot® o)
x (sin B — 2R cot « cos B sin 6)]/13 (19¢)

with the abbreviation I = sin f(1 ~ 4R? cot? «)
— 4R cotacos fsin . Combining (19) with
the flux flow equation (1) and using cos u =
(2R cot a cos B sin @ — sin B)/(1 + 4R? cot? a)t;
[(6z/oR* + 1]* = (1 + 4R? cot? @)t and
[(0Z/oX)* + (0Z/3Y)* + 1]* = 1, one obtains
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Sop (2R cot a cos fisin 8 — sin fB)
¢ = : (20)
+[Io +(Z - 2)I, + (Z — 2)°1,]
where “+ 7 or ““— sign is chosen so that flux
is positive. In principle one can now calculate,
as described in section II, flux density contours.
However, the algebra is more involved. Assign-
ing a definite value to (8/sy), one obtains a
polynomial in R by rearranging (20) with the
aid of FORMACH* in the form:

8
Y aR =0

i=0

(21)
where the coefficients g; are given in Appendix 1.
1.00

1.50 2.00 2.50

INCIDENT
LIGHT

FiG. 2. Contours of equal illumination for light specularly
reflected from paraboloid to plane Z = —0-5 in units of
the base radius of the paraboloid. Flux values associated
with contours represents per cent of incident radiation.
Reflection coefficient is regarded as constant and equal to 1.

* FORMAC Interpreter is an extension of the OS/360
PL/X(F) compiler which provides for the symbolic manipula-
tion of mathematical expressions [3].
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The problem is to solve (20) for R as a function
of 6 and substitute the result into (3a) and (3b)
to obtain the coordinates X, Y of the desired
contour. Since an analytical expression for R is
not possible in this case, the real and imaginary
roots of equation (21) were obtained for given
values of a, f3, (8/s¢), Z(=d) and @ by using the
Newton-Ralphson iterative techniques as des-
scribed in the IBM Scientific Subroutine Package
Program POLRT [4]. The real and physically
possible roots were then used to determine the
receiver coordinates X, Y for a series of values
of 0. Typical constant heat flux contours for
o = 45 degress and f§ = 0, 20 degrees are shown
in Fig. 2. The flux values are expressed as per cent
of incident radiation flux density. The reflection
coefficient is regarded as constant and equal to 1.

V. SPECULAR REFLECTION FROM HEMISPHERE
TO PLANAR RECEIVER

Now we shall consider the reflecting surface
to be the hemisphere z = Ro(1 — (1 — r?/R3)})
where r is the radius of hemisphere measured
from the Z axis and R, is radius of base which
we shall consider to be unity. The receiver
surface is again the plane Z = d where d is a
constant. For convenience, we put R = r/R,,.
The incident radiation is given by

i = —cosfiJ —sin K. (22a)

The outward normal to the reflecting surface is
n=RcosOI + RsinfJ — (1 — RH*K. (22b)

The direction of reflected ray is determined
from (4). Then fi(=i./iz) and f,(=i/i) are given
by

CR?*sin 20 — 2AR(1 — R*)* cos 0

N = C3CRT =R sin0 + Al - 289

(22¢)
. 2CR?*sin? 0 — 24R(1 — R*)?sin0 — C
S = TR R sin 0 + A(T = 2R7)
where 4 = sin ff and C = cos f. After perform-
ing the appropriate partial differentiation, the
expression for the Jacobian given by equation
(2) becomes .
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J(R,0) = I(R.0) + (Z — 2)I (R, 0)
+(Z — 2)’1,(R, 0) (23)
where
I, = (sin § — R(1 — R?)~* cos fsin O)1. (23a)
I, = (2Rsin 2Bsin 0 + 2(1 — R?)"*
[R*(sin? B — cos” fsin? f)
—sin? f— 1112
I, = {2Rsin2Bsin @(1 — R*)*
x [=3 + 4R? + R*cos? Bsin 20 (1 — R?)?]
+ 4sin? f(1 — 2R?) + 8R?*cos” fsin” 0
x [sin? @ + R*cos? 0 x (1 + 2sin?f
x (I + R/t

X

{(23b)

(23¢)

with the abbreviation I, = {1 — 2R%)sinf§ —
2R(1 — R*)"*cos f cos 6. Combining (23) with
the flux flow equation (1) and using cosu =
Rcos ffsin@ — sin (1 — R, [(6Z/6R)* + 1]*
= (1 — R*)"*and [(0Z/0X)* + (8Z/0Y)* + 1]*
= 1, yields the following expression for the flux
per unit area of receiver surface

_ sop[Rcos fsin0(1 — R*)"* — sin f§]
[l +(Z =2, +(Z = 2)*,]

(24)

where the “+ " or ““—"" sign is chosen so that
the flux is positive. The flux flow equation (24)
for specified (&/s,) is again rearranged into a
more manageable polynomial expression by
means of the FORMAC program to yield:

) e

8
aR + (1 —RH Y bR =0 (25
[4] j=0

1]

i

where the coefficients a;, b, are given in Appendix
2.

The flux flow equation in the form (25) can
now be solved simultaneously with the equation
for the coordinates X, Y to obtain the loci of
points of constant flux on the receiver plane.
The angle 6 again plays the role of a parameter.
Typical constant illumination (constant heat
flux) contours for f = 0 and 20 degrees are
presented in Fig. 3. Contours are expressed as
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FiG. 3. Contours of equal heat flux for radiation specularly
reflected from hemisphere to plane Z = —0-5 in units of the
radius of the hemisphere. Flux values associated with con-
tours represents per cent of incident radiation. Reflection
coefficient p is one for all angles of incidence.

percentage of incident flux density; reflection
coefficient is taken as 1 for all angles of incidence.

CONCLUSION

A simple, exact analytical procedure has been
developed which enables one to calculate the
flux density over an arbitrary receiver surface
for incident radiation reflected from an arbitrary
curved surface. As*examples, flux contours are
calculated over a planar receiver surface for
parallel radiation from a cone, a paraboloid and
a hemisphere. With equal ease one can calculate
flux contours over a curved receiver surface. The
procedure should enable one to obtain exact
solutions to specular radiant heat transfer prob-
lems not previously analytically tractable.
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APPENDIX 1

The coefficients g; appearing in the polynomial expression
(21) for the flux flow equation when reflecting surface is
paraboloid of revolution are:

ay = psin®f + (&75o) sin f(1 — 4Z cot o) (sin® f — 4Z cot o)
a, = — 2cos f§ cotasin 8{sin® B[7 + 5(6/sy)]
+ 87 sin 2§ cot a(&/se) + 1627 cot? a(&/s,)}
a, = 4sin foot? af(l + 8 cos? Bsin® H){(&/5,)
+ 3psin B(6 cos® Bsin® 8 — 6sin’ )
— 4Z cot #(3 — sin?® § + 4 cos” fsin? ) {&/s,)
+ 1627 cot? d(&)s,)}
ay = 8 cos ff cot® wsin B ~(2+ 3sin® B +4 cos® fsin? B)&/s,)
+ Spsin f(3sin® B — 4 cos® #sin® 0)
+ 247 cot a(£isy) — 1622 cot® 2 &/sy)
a, = 16 cot* a{p(3 sin* f—6sin? (2f} sin® 6+ 8 sin® A cos* )
+ sin 2B cos f(1 + 4sin? 8)(1 — 2Z cot 2)(&/50)}
as = 8 cot® @sin 0{6 sin 2(4 cos* B sin? & — 3sin? f)
— 4cos? f(5 + 4sin® 0)(E/sy) + 64Z cos f cot a(E/sy)}
ag = 64sin ff cot® afp sin (6 cos? fsin® @ — sin® ff)
+ dcos?® feota}
a; = 128 cos fcot” asin B{psin? f — 3 cos® Bl&/so)}

ag = — 256 cos? B sin ff cot® a(&/sy).

APPENDIX 2

The coefficients a;, b; appearing in the polynomial ex-
pression {25) for the flux flow equation when the reflecting
surface is a hemisphere are:

ag = A&/sy)sin? fisin® f — 3){1 — Z)
a, = O-5sin 2f sin 8{(&/s,) [Ssin® § — 43Z% — 6Z + 4)]
~ 9psin’ i}
ay = 2A8/50)(1 — Z) [sin® B8 — Ssin’ ff)
+ cos® Bsin? 64 — 13sin* § ~ 8 sin? 0)]
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ay = 2sin 28 sin 6{(&/s,[0-25 sin? (2)
—4sin? B — 3 + (4 + cos® fsin 26)
« (Z? = 2Z + 2]
+ 2psin f[8sin? f — 7cos? fsin? 0]}
4y = — 8(&/s) (1 — Z) {025 sin® (26)
+ cos? Bsin? O[1 + sin? B9 + 4 cos? 6)
— sin? (2 + cos? B) + 2 cos” 0]}
as = 2(&/se) sin 28 sin 6] 3 sin® B — cos2 B sin? 0
— 2cos? Bsin260(5 — 4Z + 2Z%)]
— 8pcos fBsin 0[2 cos* Bsin* @ + 21sin® f
— 7-75 sin”* (2B) sin? 0]
a, = — 8(8/se) (1 — Z)[sin* B + cos? fsin? 6(6 sin?
+ cos® ffsin® 8 — cos? 6)]
a; = 8(&/s,) sin ff cos® B sin? O cos (4 — 2Z + Z?)
+ 32p cos Bsin 8[6 sin* f — 2-75sin? (2B) sin? @
— cos* fsin* 6]
ag = 2sin? (26)sin2 (26)(1 — Z)
ao = + 8 cos f§sin O[(&/s,) sin f cos? £ sin 20
+ 2p(5sin*  — 2-5sin? (28) sin? 6
+ cos* Bsin* §)]

by = (&/so)sin® P(4Z* — 8Z + 6 — sin? ) + psin®f
by = 2A&/s)sin 2B sin (1 — Z)(4 — 3sin? B)

by = 4(&/s0){sin® B(sin? B — 2cos? fsin2 0 — 222 + 4Z — 3)
+ cos? fsin 6[ — 2 + 4sin? 01 — Z) + 2Z sin® 0]}
+ 8psin® B(4 cos? fsin 0 — sin? j5)

by = 4(&/s)sin 2B sin (1 — Z)(5sin? B — 3 cos’ fsin? 0
— cos? fsin 20 — 2)

by = 4(&/s0){ — sin* B + cos? fsin? 6[2 + 3sin? B
— 8sin? 8 + 2cos? 81 + 2sin® B)
x (Z2 = 2Z — )]} + 6psin f[4sin* B + 8 cos® fisin* 0
—~ 5255sin*(2B) sin 0]

e
I

16(8/50) sin 2f3 sin 6(1 — Z)(cos? f#sin2 0
— sin> B — 0:5 cos? f§ sin 20)

be = 2(&/sg)cos® Bsin® (26)[2sin® f(1 — Z)* — 1] — 32sin
x [sin* B + 4 cos* fsin* 6 — 2:25sin? (2f) sin? 0]

b, = — 16(&/s,)sin f cos® Bsin? Bcos (1 ~ Z)

>
EY

= (&/sq) sin? (28) sin? (26) + 16p sin B[sin*
+ 5cos* Bsin* 8 — 2:5sin? (2B) sin? 0]

FLUX THERMIQUE SUR UN PLAN POUR UN RAYONNEMENT PARALLELE
SPECULAIREMENT REFLECHI PAR UN CONE, UN HEMISPHERE ET UN
PARABOLOIDE

Résumé— Des formules explicites sont établies pour le flux thermique par unité d’aire d’une surface

réceptrice générale aprés qu’un rayonnement incident paralléle soit réfléchi spéculairement par un céne,

un paraboloide de révolution et par un hémisphére. Les formules de la densité de flux sont inversées de

telle sorte que les coordonnées des points sur la surface réceptrice sont exprimées en fonction de la densité

de flux. Ceci donne des expressions analytiques pour la répartition de la densité de flux. On présente des

résultats typiques de répartition constante sur une surface réceptrice plane perpendiculaire a I'axe de
symétrie du réflecteur.

LINIEN KONSTANTEN WARMESTROMES AUF EINER EBENE FUR PARALLELE,
SPIEGELND REFLEKTIERTE STRAHLUNG VON EINEM KEGEL, EINER
HALBKUGEL UND EINEM PARABOLOID

Zusammenfassung— Es werden explizite Gleichungen abgeleitet fiir die Wirmestromdichte auf einer

allgemeinen Empféngeroberfliche, fiir parallel einfallende, spiegelnd reflektierte Strahlung von einem

Kegel, einem Rotationsparaboloid und einer Halbkugel. Die Gleichungen fiir die Wirmestromdichte

werden so aufgelost, dass die Koordinaten eines Punktes auf der Empfangerfliche von der Stromdichte

abhiangen. Dies ergibt geschlossene analytische Ausdriicke fiir die Linien konstanter Wirmestromdichte.

Typische Ergebnisse wurden als Linien konstanter Beleuchtung gezeichnet auf einer ebenen Empfiinger-
flache. die senkrecht zur Symmetrieachse des Reflektors steht.



HEAT FLUX CONTOURS

JUHHUN NMOCTOAHHOIO TENJIOBOTO 1IOTOKA HA I[IJIACTUHE [1PU
3EPHAJNBHOM OTPAMKEHUUN ITAPAJIJIEJBLHOI'O U3JIVUEHHNA OT KOHVCA,
[TOJYCOEPBI U ITAPABOJIOUAA

Annoraumsa—Ilonyyensl GopMynsr B ABHOM BHUIe ;UIA yJedbHOr0 TeIIOBOTO MOTOKA Ha
eMHUTLY TIIONIAN MOBEPXHOCTH NMPHEMHUKA MPH 3epKAILHOM OTPArKeHUM IIIOCKOTO Majalo-
NEero u3JydeHus KOMYCOM, napa0osoujoM BpallleHUs H loaycdepoir. Dopmyiast Ai1a
INIOTHOCTH TOTOKA Npeolpas3oBaHbl TaKNUM 00pas3oM, YTO KOOPAMHATHI TOYeK TMOBEePXHOCTH
IIpHeMHHKA BbIPAHEHH Yepeb INUIOTHOCTb IOTOKA. OTO M03BOMLIIO TOIYYUTH 3aMKHYThIE
AHAJIUTHYECKHME BHIPAHEHUA [IA JHHWH TIOCTOAHHON NAOTHOCTH noToka. TuAnYHBIE
pe3yabTaTel NpEICTaBAeHH Ha TNpadukax B BUe JMHUA MOCTOAHHON OCBEIIEHHOCTH Ha
TITOCKOT 10BEPXHOCTH NPHEMHMKA, NePIeHINKYJIAPHOI ocll CUMMETPHUI OTPaMKaTelNA.
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